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Okay, let’s continue building our
Card Matching Game!
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Close Navigator.
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Scrolled down.

The first thing we’re going to do is go over 
last week homework assignment.

This is the only time we will go over the 
homework assignment in lecture.
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Here’s the @property for the deck 
you were supposed to add in

the first homework assignment.

Minor problem.
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We need to #import Deck if 
we want to use it in this class.
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We need to #import PlayingCardDeck 
if we want to use it in this class.

Here’s our getter method 
for lazy instantiation.

You’ll see why we’ve factored 
out createDeck in a little while.
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Even though this method returns a Deck,
we are within our rights to return a PlayingCardDeck instance
since PlayingCardDeck inherits from Deck (and thus “isa” Deck).

It is sort of unfortunate that we are importing PlayingCardDeck into this 
class since it is otherwise a generic card matching game Controller.

In other words, there’s really nothing that would prevent it from working 
with other Decks of other kinds of cards than PlayingCards.

We’ll use polymorphism next week to improve this state of affairs.#import 
PlayingCardDeck 

instead.
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Simply draw a random card ...
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... and put its contents on the button.



Stanford CS193p
Fall 2013

But how do we handle running out of cards?
Easy.

Just don’t flip to the front if the deck is empty
(which we know if drawRandomCard returns nil).

Protect against an empty deck.
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Finally, as Hinted at in the assignment,
let’s start off with the card face down

(otherwise we’d end up showing the Ace of clubs twice).

Unhide the Attributes Inspector.
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Just clear out the title ...

... and set the image to the back of the card.
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That’s all there is to it.

Let’s run to see if it works.



Stanford CS193p
Fall 2013

Comes up face down.
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Touch

Whew! Not the Ace of clubs.
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Touch

Back to face down.  Yay!



Stanford CS193p
Fall 2013

Touch

A different card!  It’s working!
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This game would be a lot more interesting 
with more than just one card!
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Let’s start by moving our one card 
into the upper left corner.
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Copy and paste it
to make a second card.
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Reposition it using blue guidelines.
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Make a total of 12 cards.
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Let’s Run and see what we’ve got so far.
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Tapping should flip over any of the cards.



Stanford CS193p
Fall 2013

Tapping again should flip it back down.
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As we might expect, tapping yet again
brings up a different, random card.
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Now it’s time to make a card 
matching game that actually 

matches cards!

Stop.
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To do that, we need to enhance our Model.

We’re going to add a new class,
CardMatchingGame,

which encapsulates all the logic of our game.
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Objective-C class, of course.
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Call it CardMatchingGame.

Subclass of NSObject.
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Don’t forget this is part of our Model.
It will have ZERO UI code in it.

Model here too.
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Hopefully your CardMatchingGame 
appeared here in the Model group.
If not, you can simply drag it there.

Often the best way to start designing a new class is 
to fill out its @interface since that delineates what 

it is this class is responsible for doing.
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Our game lets you match among a certain number of 
cards given a certain deck to choose from.

So let’s have an initializer that initializes a newly 
allocated game with those two pieces of information.

Obviously it must be possible to choose a 
card in our card matching game.

And it must be possible to get a card so that, for 
example, it can be displayed by some UI somewhere.

Finally, it wouldn’t be much of a game without a score.
Since the CardMatchingGame keeps the score, this is a readonly method publicly.

(It will actually not be readonly privately, as you’ll see soon.)

readonly means there is no setter (only a getter).

Add the following public 
methods to your 

CardMatchingGame.
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Notice that none of these methods has anything to do 
with user-interface.

It is up to the Controller to interpret the Model into 
something presented to the user via the View.

Uh oh! Warning!

Click here to see what 
this warning is all about.

No problem.
Incomplete implementation.

That makes sense because we haven’t 
implemented any of these public 

methods yet.

You should never submit code in this 
course that has any warnings or errors.
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Note the ()

This area where we put 
private properties is called a 

“Class Extension”.

Let’s start by redeclaring the score to not be 
readonly in our implementation (only).

We usually don’t use this readwrite directive unless 
publicly we made the @property readonly

(since readwrite is the default).

It’s perfectly fine for a 
@property to be readonly 
both publicly and privately.
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Our game needs to keep track of the cards,
so we need a private @property to do that.

Indeed there is no way to express in Objective-C that 
this array should only have Card objects in it.
One might argue that that is a shortcoming.

All we can do is be sure to comment what we intend.
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Lazy instantiation!
Hopefully this is quite familiar 

to you by now.
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Start off our initializer by letting our 
superclass have a chance to initialize itself

(and checking for failure return of nil).
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This is our class’s designated initializer.
That means that it is not legally initialized unless this gets called at some point.

We must always call our superclass’s designated initializer from our designated initializer
(if this were just a convenience initializer, we’d have to call our own designated initializer from it).

NSObject’s designated initializer is init.

You should always comment which initializer is your 
designated initializer if it is different from your superclass’s.

Classes can have multiple initializers,
but obviously only one designated initializer.
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All we need to do to initialize our game is to iterate 
through the passed count of cards, drawRandomCard 

from the passed deck, then addObject: to our 
NSMutableArray of cards each time.
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Adding nil to an NSMutableArray 
will crash your program.
Let’s protect against this!

Note that we will return nil if 
we cannot initialize properly given 

the arguments passed.
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cardAtIndex: is easy.
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But let’s be sure to check to be sure 
the argument is not out of bounds.
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Next comes chooseCardAtIndex:.
This contains the primary logic of this class.

We’ll make some space to work here.



Stanford CS193p
Fall 2013

Let’s start by putting the card to be 
chosen into a local variable called card.
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We will only allow unmatched cards to be chosen
(i.e. once a card is matched, it’s “out of the game”).
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If the card is already chosen,
we’ll “unchoose” it

(so really this method is more like 
“toggle chosen state of card”).

Otherwise, it is being chosen 
and so we need to match it 
against other chosen cards.

And then we’ll mark it as chosen.
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So we’ll just iterate through all the 
cards in the game, looking for ones that 

are unmatched and already chosen.
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If we find another chosen, unmatched card,
we check to see if it matches the just chosen card 

using Card’s match: method.

match: takes an NSArray of other cards in case a 
subclass can match multiple cards.

Since our matching game is only a 2-card matching 
game, we just create an array with one card in it.

Yes, it is perfectly legal to use the 
@[] array creation syntax here!

Remember that match: 
returns how good a match it was

(zero if not a match).
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If there’s a match (of any kind), bump our score!

Otherwise, impose a penalty for
choosing mismatching cards.

This could just as easily be a #define.
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We can even give a bonus to matches if we want.
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If it’s a mismatch, “unchoose” 
the mismatching other card.

If we allowed more than 2 card matches, we might not necessarily do this.
One could also imagine unchoosing both mismatching cards,

but that would require a delay unchoosing the second one and we haven’t
really learned how to animate delays in the UI like that, thus this approach.
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If it’s a match, mark both 
matching cards as matched.
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Since we only allow matching 2 cards and 
we’ve found 2 chosen cards at this point,

we can break out of the for loop.

In next week’s homework (not this week’s), 
you’ll be supporting matching more than 2 cards,

so you’ll be doing this all slightly differently.
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Let’s making choosing cards not be “free”
 by imposing a cost to choose.
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That’s it!
Pretty simple really.

But there’s one more change we’ll want to make to our Model.
Specifically, PlayingCard’s match: algorithm.
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Card matches only if the cards are exactly the same
(that is to say, their contents @property values are equal).

PlayingCards should match if the suit and/or rank is the same.
Let’s go to PlayingCard and override Card’s implementation of 

match: to make this so.

Click on Card in the Navigator
so that we remind ourselves what 

its match: algorithm is.
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Click to switch to PlayingCard.
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Add an implementation for match:.

Note that even though PlayingCard is overriding its 
superclass’s implementation of a method (match:),

it is not required to redeclare match: in its header file.
Generally we do not redeclare overridden methods.

Often a subclass’s implementation of a method will call 
its superclass’s implementation by invoking super

(e.g. [super match:...]), but PlayingCard has its own, 
standalone implementation of this method and thus does 

not need to call super’s implementation.
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First, we will only match a single other card
(next week’s homework assignment will have 

to do better than this).
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Let’s get the card in the array
(there will only be one card in the array

if we got this far). firstObject is an NSArray method.  It is just like
[array objectAtIndex:0]

except that it will not crash if the array is empty
(it will just return nil).

Convenient.
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Give 4 points for matching the rank ...
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And only 1 point for matching the suit ...

There are only 3 cards that will
match a given card’s rank,

but 12 which will match its suit,
so this makes some sense.
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That’s it for our Model.
Back to our View and Controller.
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Close the Navigator.

Almost done.
All we have left to do is use our new CardMatchingGame Model 

in our Controller and add some UI to show the score.
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Don’t forget the #import of the CardMatchingGame.

We need a @property for our game Model.
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We need the number of cards here.

How many are there?

We’re going to connect a new kind of
outlet that points to all of the card buttons.

Instead of being a pointer to a single instance (like flipsLabel),
 it’s going to be an NSArray (with multiple UIButtons in it).

Then we’ll simply ask the array how many items are in it.

Let’s lazily instantiate it.

Told you createDeck would come in handy!
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Ctrl-drag (as usual) from any one of the 
buttons into the @interface-@end area
(because that’s how we create an outlet,

 as you’ll remember from the flipsLabel).
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Instead of a normal Outlet ...
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... select Outlet Collection.
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This specifies that the array will 
contain UIButton instances.

Outlet Collections are NSArray @propertys.

Outlet Collection arrays are always strong, so Xcode has removed that option from the dialog.
While the View will point strongly to all of the buttons inside the array, it will not point to the array itself at all 

(only our Controller will) so our outlet needs to be strongly held in the heap by our Controller.

This is only for Xcode’s benefit only.
Objective-C doesn’t let you specify the class of objects in an array.
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Enter cardButtons as the name of our 
outlet collection property.

And click Connect.
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See? strong.

This IBOutletConnection(UIButton) is again 
just something Xcode puts in there to remember 
that this is an outlet not just a random NSArray.

The compiler ignores this.

As expected, this 
outlet is an NSArray.
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To connect a second button to this outlet 
collection array, we simply ctrl-drag from the 
second button to the @property line of code.
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Ditto a third.
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Mousing over this icon shows you what this
Outlet Collection is connected to (as usual).

Verify that all the buttons are in the collection.

This is now an NSArray which will contain all the UIButtons you connected in random order. 
This randomness is okay for our purposes because

the order of these cards will mean nothing to our matching game.
It is something to consider though if you are developing an app where the order does matter

(in that case, an outlet collection may not be what you want).
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Now we know how many 
cards there are in the UI.
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We don’t need any of this anymore 
because our Model is going to handle it.
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So delete it.
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indexOfObject: is an 
NSArray method.

We’re using our Model here.

CardMatchingGame will now handle all 
the effects of choosing a card.

It does exactly what you would 
expect (it tells you where the 
passed object is in the array).



Stanford CS193p
Fall 2013

However, our Controller must still do its 
job of interpreting the Model into the View.
We’ll implement updateUI in a moment.
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Let’s get rid of all the old stuff from our simpler version.
We don’t need the Deck, nor the flip stuff.
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Scrolling down to make space ...
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Updating the UI is quite straightforward.
We are just going to cycle through all the cardButtons and, 

based on the corresponding card in our Model ...
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... we’ll set the title and 
background image of the 

cardButton.
We’ll create some helper 

methods to calculate the title and 
image based on the card.
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The title and background 
image just depend on 

whether the card is “chosen”
(chosen is face up,

not chosen is face down).
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Now let’s use those 
helper methods.
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If a card.isMatched, we can disable 
the corresponding cardButton.
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We really need to see the score!
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We need a Label for the score, so 
bring back the Utilities Area so we 

can drag one out of the palette.
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Object Palette.
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Drag a Label from the
Object Library to your View.
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Lower left corner
(where Flips used to be)

is a good spot.
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Start with “Score: 0”
and make it wider.
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Close Utilities again.



Stanford CS193p
Fall 2013

CTRL drag from the score label to your 
@interface-@end area in your implementation 

file to create an outlet to it.



Stanford CS193p
Fall 2013

Give it the appropriate name scoreLabel.
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Update the score
(using the same code as we used for Flips)
whenever we update the rest of the UI.

We’re using our Model here.



Stanford CS193p
Fall 2013

Done!  Final run!



Stanford CS193p
Fall 2013

All flip ups should 
reduce the score.

Tap to choose.
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Tap to “unchoose” (should not cost a point).

Tap to choose.
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Tap to choose.

Tap to “unchoose”.
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-1 for flip up
+4 for suit match
thus score is 0

Tap to choose (and suit match!).
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Tap to choose.
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lucky flip!
-1 for flip

+16 for rank match!

Tap to choose.
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Tap to choose.
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-1 for flip
-2 for mismatch!

Be sure to check for rank 
and suit matches and also 

for mismatches.

Tap to choose (and cause mismatch!)

Automatically 
“unchosen” on 

mismatch.
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That’s all folks!

Stop.
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Review
Things you should know by now ...
MVC
Xcode
Basic Objective-C
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Review (MVC)
Model is UI-independent
Cards and Decks, not UIButtons and UILabels

View is (so far) completely generic UI elements
UIButton 
UILabel 

Controller interprets Model for View (and vice-versa)
Example: converting isChosen to selected state of a button
Example: converting isMatched to enabled state of a button
Example: taking a button touch and turning it into a chooseCardAtIndex: in the Model
Target/Action and Outlets (so far)
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Review (Xcode)
Create a Project and maneuver through Xcode’s UI
Hide/Show Navigator, Utilities, Assistant Editor, etc., etc.  Also how to run in the Simulator.

Edit
Not just code, but also your storyboard, use Attributes Inspector to edit buttons, labels, et. al.
Ctrl-drag to make connections (actions and outlets).
Right click on buttons, etc., to find out about and disconnect connections.
Look at warnings and errors (and get rid of them hopefully!).  Debugger on Friday this week.

Add classes to your project
e.g. you added the Card, etc., Model classes in your Homework assignment. 

Use the documentation
Many ways to get to documentation, but ALT-clicking on a keyword is one of the coolest.
Once there, search and click on links to find what you want.
Crucial to being a good iOS programming to become familiar with all the documentation.
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Review (Basic Objective-C)
Classes
Header .h (public) versus Implementation .m (private)
@interface MyClass : MySuperclass ... @end (only in header file)
@interface MyClass() ... @end (only in implementation file)
@implementation ... @end (only in implementation file)
#import 

Properties
@property (nonatomic) <type> <property name> (always nonatomic in this course)
It’s just setter and getter methods.  Default ones automatically generated for you by compiler.
Better than instance variables alone (lazy instantiation, consistency checking, UI updating, etc.).
@property (strong or weak) <type which is a pointer to an object> <property name> 
@property (getter=<getter name>) ...
@property (readonly) ...  & @property (readwrite) ...
Invoking setter and getter using dot notation, e.g., self.cards = ... or if (rank > self.rank) ...
@synthesize <prop name> = _<prop name> (only if you implement both setter and getter)
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Review (Basic Objective-C)
Types and Memory
Types: MyClass *, BOOL (YES or NO), int, NSUInteger, etc.   (id not fully explained yet.)
All objects live in the heap (i.e. we only have pointers to them).
Object storage in the heap is managed automatically (guided by strong and weak declarations). 
Lazy instantiation (using a @property’s getter to allocate and initialize the object that the
    @property points to in an “on demand” fashion).  Not everything is lazily instantiated, btw. :)
If a pointer has the value nil (i.e. 0), it means the pointer does not point to anything.

Methods
Declaring and defining instance methods, e.g., - (int)match:(NSArray *)otherCards
Declaring and defining class methods, e.g., + (NSArray *)validSuits
Invoking instance methods, e.g., [myArray addObject:anObject]
Invoking class methods, e.g., unsigned int rank = [PlayingCard maxRank]
Method’s name and its parameters are interspersed, e.g., [deck addCard:aCard atTop:YES]
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Review (Basic Objective-C)
NSString
Immutable and usually created by manipulating other strings or @“” notation or class methods.
e.g. NSString *myString = @“hello”
e.g. NSString *myString = [otherString stringByAppendingString:yetAnotherString]
e.g. NSString *myString = [NSString stringWithFormat:@“%d%@”, myInt, myObj]

There is an NSMutableString subclass but we almost never use it.
Instead, we create new strings by asking existing ones to create a modified version of themselves.
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Review (Basic Objective-C)
NSArray
Immutable and usually created by manipulating other arrays (not seen yet) or with @[] notation.
@[@“a”,@“b”] is the same as [[NSArray alloc] initWithObjects:@“a”,@“b”,nil].
Access the array using [] notation (like a normal C array), e.g., myArray[index].
myArray[index] works the same as [myArray objectAtIndex:index].
The method count (which returns NSUInteger) will tell you how many items in the array.
   (We accidentally used dot notation to call this method in Lecture 2!)
Be careful not to access array index out of bounds (crashes).  Only last/firstObject immune.
Can contain any mix of objects of any class)  No syntax to say which it contains.
Use NSMutableArray subclass if mutability is needed.  Then you get ...
    - (void)addObject:(id)anObject; 
    - (void)insertObject:(id)anObject atIndex:(int)index; 
   - (void)removeObjectAtIndex:(int)index; 
Usually created with [[NSMutableArray alloc] init]
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Review (Basic Objective-C)
Creating Objects in the Heap
Allocation (NSObject’s alloc) and initialization (with an init... method) always happen together!
   e.g. [[NSMutableArray alloc] init]
   e.g. [[CardMatchingGame alloc] initWithCardCount:c usingDeck:d]

Writing initializers for your own classes ...
Two kinds of initializers: designated (one per class) and convenience (zero or more per class).
Only denoted by comments (not enforced by the syntax of the language in any way).
Must call your super’s designated initializer (from your designated initializer)
   or your own designated initializer (from your own convenience initializers).

This whole concept takes some getting used to.
Luckily, because of lazy instantiation, et. al., we don’t need initializers that much in Objective-C.
And calling initializers is easy (it’s just alloc plus whatever initializer you can find that you like).
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Review (Basic Objective-C)
Other
Fast enumeration: for (MyClass *myObject in arrayOfMyObjects) { }.
#define 
NSLog(@“show this object %@ in the console”, anObject) 

Quiz
What does this do?
   cardA.contents = @[cardB.contents,cardC.contents][[cardB match:@[cardC]] ? 1 : 0] 
This line has a setter, getters, method invocation, array creation and array accessing all in one.
And lots of square brackets.
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Coming Up
Next Lecture
More detail about Objective-C
More Foundation classes (besides strings and arrays)
Attributed strings

Next week ...
Multiple MVCs in your storyboard
View Controller Lifecycle


