
Stanford CS193p
Fall 2013

Stanford CS193p
Developing Applications for iOS

Fall 2013-14

Stanford CS193p
Fall 2013

Okay, let’s continue building our
Card Matching Game!

Stanford CS193p
Fall 2013

Close Navigator.

Stanford CS193p
Fall 2013

Scrolled down.

The first thing we’re going to do is go over
last week homework assignment.

This is the only time we will go over the
homework assignment in lecture.

Stanford CS193p
Fall 2013

Here’s the @property for the deck
you were supposed to add in

the first homework assignment.

Minor problem.

Stanford CS193p
Fall 2013

We need to #import Deck if
we want to use it in this class.

Stanford CS193p
Fall 2013

We need to #import PlayingCardDeck
if we want to use it in this class.

Here’s our getter method
for lazy instantiation.

You’ll see why we’ve factored
out createDeck in a little while.

Stanford CS193p
Fall 2013

Even though this method returns a Deck,
we are within our rights to return a PlayingCardDeck instance
since PlayingCardDeck inherits from Deck (and thus “isa” Deck).

It is sort of unfortunate that we are importing PlayingCardDeck into this
class since it is otherwise a generic card matching game Controller.

In other words, there’s really nothing that would prevent it from working
with other Decks of other kinds of cards than PlayingCards.

We’ll use polymorphism next week to improve this state of affairs.#import
PlayingCardDeck

instead.

Stanford CS193p
Fall 2013

Simply draw a random card ...

Stanford CS193p
Fall 2013

... and put its contents on the button.

Stanford CS193p
Fall 2013

But how do we handle running out of cards?
Easy.

Just don’t flip to the front if the deck is empty
(which we know if drawRandomCard returns nil).

Protect against an empty deck.

Stanford CS193p
Fall 2013

Finally, as Hinted at in the assignment,
let’s start off with the card face down

(otherwise we’d end up showing the Ace of clubs twice).

Unhide the Attributes Inspector.

Stanford CS193p
Fall 2013

Just clear out the title ...

... and set the image to the back of the card.

Stanford CS193p
Fall 2013

That’s all there is to it.

Let’s run to see if it works.

Stanford CS193p
Fall 2013

Comes up face down.

Stanford CS193p
Fall 2013

Touch

Whew! Not the Ace of clubs.

Stanford CS193p
Fall 2013

Touch

Back to face down. Yay!

Stanford CS193p
Fall 2013

Touch

A different card! It’s working!

Stanford CS193p
Fall 2013

This game would be a lot more interesting
with more than just one card!

Stanford CS193p
Fall 2013

Let’s start by moving our one card
into the upper left corner.

Stanford CS193p
Fall 2013

Copy and paste it
to make a second card.

Stanford CS193p
Fall 2013

Reposition it using blue guidelines.

Stanford CS193p
Fall 2013

Make a total of 12 cards.

Stanford CS193p
Fall 2013

Let’s Run and see what we’ve got so far.

Stanford CS193p
Fall 2013

Tapping should flip over any of the cards.

Stanford CS193p
Fall 2013

Tapping again should flip it back down.

Stanford CS193p
Fall 2013

As we might expect, tapping yet again
brings up a different, random card.

Stanford CS193p
Fall 2013

Now it’s time to make a card
matching game that actually

matches cards!

Stop.

Stanford CS193p
Fall 2013

To do that, we need to enhance our Model.

We’re going to add a new class,
CardMatchingGame,

which encapsulates all the logic of our game.

Stanford CS193p
Fall 2013

Objective-C class, of course.

Stanford CS193p
Fall 2013

Call it CardMatchingGame.

Subclass of NSObject.

Stanford CS193p
Fall 2013

Don’t forget this is part of our Model.
It will have ZERO UI code in it.

Model here too.

Stanford CS193p
Fall 2013

Hopefully your CardMatchingGame
appeared here in the Model group.
If not, you can simply drag it there.

Often the best way to start designing a new class is
to fill out its @interface since that delineates what

it is this class is responsible for doing.

Stanford CS193p
Fall 2013

Our game lets you match among a certain number of
cards given a certain deck to choose from.

So let’s have an initializer that initializes a newly
allocated game with those two pieces of information.

Obviously it must be possible to choose a
card in our card matching game.

And it must be possible to get a card so that, for
example, it can be displayed by some UI somewhere.

Finally, it wouldn’t be much of a game without a score.
Since the CardMatchingGame keeps the score, this is a readonly method publicly.

(It will actually not be readonly privately, as you’ll see soon.)

readonly means there is no setter (only a getter).

Add the following public
methods to your

CardMatchingGame.

Stanford CS193p
Fall 2013

Notice that none of these methods has anything to do
with user-interface.

It is up to the Controller to interpret the Model into
something presented to the user via the View.

Uh oh! Warning!

Click here to see what
this warning is all about.

No problem.
Incomplete implementation.

That makes sense because we haven’t
implemented any of these public

methods yet.

You should never submit code in this
course that has any warnings or errors.

Stanford CS193p
Fall 2013

Note the ()

This area where we put
private properties is called a

“Class Extension”.

Let’s start by redeclaring the score to not be
readonly in our implementation (only).

We usually don’t use this readwrite directive unless
publicly we made the @property readonly

(since readwrite is the default).

It’s perfectly fine for a
@property to be readonly
both publicly and privately.

Stanford CS193p
Fall 2013

Our game needs to keep track of the cards,
so we need a private @property to do that.

Indeed there is no way to express in Objective-C that
this array should only have Card objects in it.
One might argue that that is a shortcoming.

All we can do is be sure to comment what we intend.

Stanford CS193p
Fall 2013

Lazy instantiation!
Hopefully this is quite familiar

to you by now.

Stanford CS193p
Fall 2013

Start off our initializer by letting our
superclass have a chance to initialize itself

(and checking for failure return of nil).

Stanford CS193p
Fall 2013

This is our class’s designated initializer.
That means that it is not legally initialized unless this gets called at some point.

We must always call our superclass’s designated initializer from our designated initializer
(if this were just a convenience initializer, we’d have to call our own designated initializer from it).

NSObject’s designated initializer is init.

You should always comment which initializer is your
designated initializer if it is different from your superclass’s.

Classes can have multiple initializers,
but obviously only one designated initializer.

Stanford CS193p
Fall 2013

All we need to do to initialize our game is to iterate
through the passed count of cards, drawRandomCard

from the passed deck, then addObject: to our
NSMutableArray of cards each time.

Stanford CS193p
Fall 2013

Adding nil to an NSMutableArray
will crash your program.
Let’s protect against this!

Note that we will return nil if
we cannot initialize properly given

the arguments passed.

Stanford CS193p
Fall 2013

cardAtIndex: is easy.

Stanford CS193p
Fall 2013

But let’s be sure to check to be sure
the argument is not out of bounds.

Stanford CS193p
Fall 2013

Next comes chooseCardAtIndex:.
This contains the primary logic of this class.

We’ll make some space to work here.

Stanford CS193p
Fall 2013

Let’s start by putting the card to be
chosen into a local variable called card.

Stanford CS193p
Fall 2013

We will only allow unmatched cards to be chosen
(i.e. once a card is matched, it’s “out of the game”).

Stanford CS193p
Fall 2013

If the card is already chosen,
we’ll “unchoose” it

(so really this method is more like
“toggle chosen state of card”).

Otherwise, it is being chosen
and so we need to match it
against other chosen cards.

And then we’ll mark it as chosen.

Stanford CS193p
Fall 2013

So we’ll just iterate through all the
cards in the game, looking for ones that

are unmatched and already chosen.

Stanford CS193p
Fall 2013

If we find another chosen, unmatched card,
we check to see if it matches the just chosen card

using Card’s match: method.

match: takes an NSArray of other cards in case a
subclass can match multiple cards.

Since our matching game is only a 2-card matching
game, we just create an array with one card in it.

Yes, it is perfectly legal to use the
@[] array creation syntax here!

Remember that match:
returns how good a match it was

(zero if not a match).

Stanford CS193p
Fall 2013

If there’s a match (of any kind), bump our score!

Otherwise, impose a penalty for
choosing mismatching cards.

This could just as easily be a #define.

Stanford CS193p
Fall 2013

We can even give a bonus to matches if we want.

Stanford CS193p
Fall 2013

If it’s a mismatch, “unchoose”
the mismatching other card.

If we allowed more than 2 card matches, we might not necessarily do this.
One could also imagine unchoosing both mismatching cards,

but that would require a delay unchoosing the second one and we haven’t
really learned how to animate delays in the UI like that, thus this approach.

Stanford CS193p
Fall 2013

If it’s a match, mark both
matching cards as matched.

Stanford CS193p
Fall 2013

Since we only allow matching 2 cards and
we’ve found 2 chosen cards at this point,

we can break out of the for loop.

In next week’s homework (not this week’s),
you’ll be supporting matching more than 2 cards,

so you’ll be doing this all slightly differently.

Stanford CS193p
Fall 2013

Let’s making choosing cards not be “free”
 by imposing a cost to choose.

Stanford CS193p
Fall 2013

That’s it!
Pretty simple really.

But there’s one more change we’ll want to make to our Model.
Specifically, PlayingCard’s match: algorithm.

Stanford CS193p
Fall 2013

Card matches only if the cards are exactly the same
(that is to say, their contents @property values are equal).

PlayingCards should match if the suit and/or rank is the same.
Let’s go to PlayingCard and override Card’s implementation of

match: to make this so.

Click on Card in the Navigator
so that we remind ourselves what

its match: algorithm is.

Stanford CS193p
Fall 2013

Click to switch to PlayingCard.

Stanford CS193p
Fall 2013

Add an implementation for match:.

Note that even though PlayingCard is overriding its
superclass’s implementation of a method (match:),

it is not required to redeclare match: in its header file.
Generally we do not redeclare overridden methods.

Often a subclass’s implementation of a method will call
its superclass’s implementation by invoking super

(e.g. [super match:...]), but PlayingCard has its own,
standalone implementation of this method and thus does

not need to call super’s implementation.

Stanford CS193p
Fall 2013

First, we will only match a single other card
(next week’s homework assignment will have

to do better than this).

Stanford CS193p
Fall 2013

Let’s get the card in the array
(there will only be one card in the array

if we got this far). firstObject is an NSArray method. It is just like
[array objectAtIndex:0]

except that it will not crash if the array is empty
(it will just return nil).

Convenient.

Stanford CS193p
Fall 2013

Give 4 points for matching the rank ...

Stanford CS193p
Fall 2013

And only 1 point for matching the suit ...

There are only 3 cards that will
match a given card’s rank,

but 12 which will match its suit,
so this makes some sense.

Stanford CS193p
Fall 2013

That’s it for our Model.
Back to our View and Controller.

Stanford CS193p
Fall 2013

Close the Navigator.

Almost done.
All we have left to do is use our new CardMatchingGame Model

in our Controller and add some UI to show the score.

Stanford CS193p
Fall 2013

Don’t forget the #import of the CardMatchingGame.

We need a @property for our game Model.

Stanford CS193p
Fall 2013

We need the number of cards here.

How many are there?

We’re going to connect a new kind of
outlet that points to all of the card buttons.

Instead of being a pointer to a single instance (like flipsLabel),
 it’s going to be an NSArray (with multiple UIButtons in it).

Then we’ll simply ask the array how many items are in it.

Let’s lazily instantiate it.

Told you createDeck would come in handy!

Stanford CS193p
Fall 2013

Ctrl-drag (as usual) from any one of the
buttons into the @interface-@end area
(because that’s how we create an outlet,

 as you’ll remember from the flipsLabel).

Stanford CS193p
Fall 2013

Instead of a normal Outlet ...

Stanford CS193p
Fall 2013

... select Outlet Collection.

Stanford CS193p
Fall 2013

This specifies that the array will
contain UIButton instances.

Outlet Collections are NSArray @propertys.

Outlet Collection arrays are always strong, so Xcode has removed that option from the dialog.
While the View will point strongly to all of the buttons inside the array, it will not point to the array itself at all

(only our Controller will) so our outlet needs to be strongly held in the heap by our Controller.

This is only for Xcode’s benefit only.
Objective-C doesn’t let you specify the class of objects in an array.

Stanford CS193p
Fall 2013

Enter cardButtons as the name of our
outlet collection property.

And click Connect.

Stanford CS193p
Fall 2013

See? strong.

This IBOutletConnection(UIButton) is again
just something Xcode puts in there to remember
that this is an outlet not just a random NSArray.

The compiler ignores this.

As expected, this
outlet is an NSArray.

Stanford CS193p
Fall 2013

To connect a second button to this outlet
collection array, we simply ctrl-drag from the
second button to the @property line of code.

Stanford CS193p
Fall 2013

Ditto a third.

Stanford CS193p
Fall 2013

Mousing over this icon shows you what this
Outlet Collection is connected to (as usual).

Verify that all the buttons are in the collection.

This is now an NSArray which will contain all the UIButtons you connected in random order.
This randomness is okay for our purposes because

the order of these cards will mean nothing to our matching game.
It is something to consider though if you are developing an app where the order does matter

(in that case, an outlet collection may not be what you want).

Stanford CS193p
Fall 2013

Now we know how many
cards there are in the UI.

Stanford CS193p
Fall 2013

We don’t need any of this anymore
because our Model is going to handle it.

Stanford CS193p
Fall 2013

So delete it.

Stanford CS193p
Fall 2013

indexOfObject: is an
NSArray method.

We’re using our Model here.

CardMatchingGame will now handle all
the effects of choosing a card.

It does exactly what you would
expect (it tells you where the
passed object is in the array).

Stanford CS193p
Fall 2013

However, our Controller must still do its
job of interpreting the Model into the View.
We’ll implement updateUI in a moment.

Stanford CS193p
Fall 2013

Let’s get rid of all the old stuff from our simpler version.
We don’t need the Deck, nor the flip stuff.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Scrolling down to make space ...

Stanford CS193p
Fall 2013

Updating the UI is quite straightforward.
We are just going to cycle through all the cardButtons and,

based on the corresponding card in our Model ...

Stanford CS193p
Fall 2013

... we’ll set the title and
background image of the

cardButton.
We’ll create some helper

methods to calculate the title and
image based on the card.

Stanford CS193p
Fall 2013

The title and background
image just depend on

whether the card is “chosen”
(chosen is face up,

not chosen is face down).

Stanford CS193p
Fall 2013

Now let’s use those
helper methods.

Stanford CS193p
Fall 2013

If a card.isMatched, we can disable
the corresponding cardButton.

Stanford CS193p
Fall 2013

We really need to see the score!

Stanford CS193p
Fall 2013

We need a Label for the score, so
bring back the Utilities Area so we

can drag one out of the palette.

Stanford CS193p
Fall 2013

Object Palette.

Stanford CS193p
Fall 2013

Drag a Label from the
Object Library to your View.

Stanford CS193p
Fall 2013

Lower left corner
(where Flips used to be)

is a good spot.

Stanford CS193p
Fall 2013

Start with “Score: 0”
and make it wider.

Stanford CS193p
Fall 2013

Close Utilities again.

Stanford CS193p
Fall 2013

CTRL drag from the score label to your
@interface-@end area in your implementation

file to create an outlet to it.

Stanford CS193p
Fall 2013

Give it the appropriate name scoreLabel.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Update the score
(using the same code as we used for Flips)
whenever we update the rest of the UI.

We’re using our Model here.

Stanford CS193p
Fall 2013

Done! Final run!

Stanford CS193p
Fall 2013

All flip ups should
reduce the score.

Tap to choose.

Stanford CS193p
Fall 2013

Tap to “unchoose” (should not cost a point).

Tap to choose.

Stanford CS193p
Fall 2013

Tap to choose.

Tap to “unchoose”.

Stanford CS193p
Fall 2013

-1 for flip up
+4 for suit match
thus score is 0

Tap to choose (and suit match!).

Stanford CS193p
Fall 2013

Tap to choose.

Stanford CS193p
Fall 2013

lucky flip!
-1 for flip

+16 for rank match!

Tap to choose.

Stanford CS193p
Fall 2013

Tap to choose.

Stanford CS193p
Fall 2013

-1 for flip
-2 for mismatch!

Be sure to check for rank
and suit matches and also

for mismatches.

Tap to choose (and cause mismatch!)

Automatically
“unchosen” on

mismatch.

Stanford CS193p
Fall 2013

That’s all folks!

Stop.

Stanford CS193p
Fall 2013

Review
Things you should know by now ...
MVC
Xcode
Basic Objective-C

Stanford CS193p
Fall 2013

Review (MVC)
Model is UI-independent
Cards and Decks, not UIButtons and UILabels

View is (so far) completely generic UI elements
UIButton
UILabel

Controller interprets Model for View (and vice-versa)
Example: converting isChosen to selected state of a button
Example: converting isMatched to enabled state of a button
Example: taking a button touch and turning it into a chooseCardAtIndex: in the Model
Target/Action and Outlets (so far)

Stanford CS193p
Fall 2013

Review (Xcode)
Create a Project and maneuver through Xcode’s UI
Hide/Show Navigator, Utilities, Assistant Editor, etc., etc. Also how to run in the Simulator.

Edit
Not just code, but also your storyboard, use Attributes Inspector to edit buttons, labels, et. al.
Ctrl-drag to make connections (actions and outlets).
Right click on buttons, etc., to find out about and disconnect connections.
Look at warnings and errors (and get rid of them hopefully!). Debugger on Friday this week.

Add classes to your project
e.g. you added the Card, etc., Model classes in your Homework assignment.

Use the documentation
Many ways to get to documentation, but ALT-clicking on a keyword is one of the coolest.
Once there, search and click on links to find what you want.
Crucial to being a good iOS programming to become familiar with all the documentation.

Stanford CS193p
Fall 2013

Review (Basic Objective-C)
Classes
Header .h (public) versus Implementation .m (private)
@interface MyClass : MySuperclass ... @end (only in header file)
@interface MyClass() ... @end (only in implementation file)
@implementation ... @end (only in implementation file)
#import

Properties
@property (nonatomic) <type> <property name> (always nonatomic in this course)
It’s just setter and getter methods. Default ones automatically generated for you by compiler.
Better than instance variables alone (lazy instantiation, consistency checking, UI updating, etc.).
@property (strong or weak) <type which is a pointer to an object> <property name>
@property (getter=<getter name>) ...
@property (readonly) ... & @property (readwrite) ...
Invoking setter and getter using dot notation, e.g., self.cards = ... or if (rank > self.rank) ...
@synthesize <prop name> = _<prop name> (only if you implement both setter and getter)

Stanford CS193p
Fall 2013

Review (Basic Objective-C)
Types and Memory
Types: MyClass *, BOOL (YES or NO), int, NSUInteger, etc. (id not fully explained yet.)
All objects live in the heap (i.e. we only have pointers to them).
Object storage in the heap is managed automatically (guided by strong and weak declarations).
Lazy instantiation (using a @property’s getter to allocate and initialize the object that the
 @property points to in an “on demand” fashion). Not everything is lazily instantiated, btw. :)
If a pointer has the value nil (i.e. 0), it means the pointer does not point to anything.

Methods
Declaring and defining instance methods, e.g., - (int)match:(NSArray *)otherCards
Declaring and defining class methods, e.g., + (NSArray *)validSuits
Invoking instance methods, e.g., [myArray addObject:anObject]
Invoking class methods, e.g., unsigned int rank = [PlayingCard maxRank]
Method’s name and its parameters are interspersed, e.g., [deck addCard:aCard atTop:YES]

Stanford CS193p
Fall 2013

Review (Basic Objective-C)
NSString
Immutable and usually created by manipulating other strings or @“” notation or class methods.
e.g. NSString *myString = @“hello”
e.g. NSString *myString = [otherString stringByAppendingString:yetAnotherString]
e.g. NSString *myString = [NSString stringWithFormat:@“%d%@”, myInt, myObj]

There is an NSMutableString subclass but we almost never use it.
Instead, we create new strings by asking existing ones to create a modified version of themselves.

Stanford CS193p
Fall 2013

Review (Basic Objective-C)
NSArray
Immutable and usually created by manipulating other arrays (not seen yet) or with @[] notation.
@[@“a”,@“b”] is the same as [[NSArray alloc] initWithObjects:@“a”,@“b”,nil].
Access the array using [] notation (like a normal C array), e.g., myArray[index].
myArray[index] works the same as [myArray objectAtIndex:index].
The method count (which returns NSUInteger) will tell you how many items in the array.
 (We accidentally used dot notation to call this method in Lecture 2!)
Be careful not to access array index out of bounds (crashes). Only last/firstObject immune.
Can contain any mix of objects of any class) No syntax to say which it contains.
Use NSMutableArray subclass if mutability is needed. Then you get ...
 - (void)addObject:(id)anObject;
 - (void)insertObject:(id)anObject atIndex:(int)index;
 - (void)removeObjectAtIndex:(int)index;
Usually created with [[NSMutableArray alloc] init]

Stanford CS193p
Fall 2013

Review (Basic Objective-C)
Creating Objects in the Heap
Allocation (NSObject’s alloc) and initialization (with an init... method) always happen together!
 e.g. [[NSMutableArray alloc] init]
 e.g. [[CardMatchingGame alloc] initWithCardCount:c usingDeck:d]

Writing initializers for your own classes ...
Two kinds of initializers: designated (one per class) and convenience (zero or more per class).
Only denoted by comments (not enforced by the syntax of the language in any way).
Must call your super’s designated initializer (from your designated initializer)
 or your own designated initializer (from your own convenience initializers).

This whole concept takes some getting used to.
Luckily, because of lazy instantiation, et. al., we don’t need initializers that much in Objective-C.
And calling initializers is easy (it’s just alloc plus whatever initializer you can find that you like).

Stanford CS193p
Fall 2013

Review (Basic Objective-C)
Other
Fast enumeration: for (MyClass *myObject in arrayOfMyObjects) { }.
#define
NSLog(@“show this object %@ in the console”, anObject)

Quiz
What does this do?
 cardA.contents = @[cardB.contents,cardC.contents][[cardB match:@[cardC]] ? 1 : 0]
This line has a setter, getters, method invocation, array creation and array accessing all in one.
And lots of square brackets.

Stanford CS193p
Fall 2013

Coming Up
Next Lecture
More detail about Objective-C
More Foundation classes (besides strings and arrays)
Attributed strings

Next week ...
Multiple MVCs in your storyboard
View Controller Lifecycle

