Stanford CS193p

Developing Applications for iOS
Fall 2013-14

Today

Multithreading

Posting blocks on queues (which are then executed on other threads).

UIScrollView

A “window” on an arbitrarily large content area that can be moved and zoomed.

Demo
Imaginarium

UITableView

(Time Permitting)
Data source-driven vertical list of views.

Multithreading

@ Queues
Multithreading is mostly about “queues” in iOS.
Blocks are lined up in a queue (method calls can also be enqueued).
Then those blocks are pulled off the queue and executed on an associated thread.

@ Main Queue
There is a very special queue called the "main queue.”
All UI activity MUST occur on this queue and this queue only.

And, conversely, non-UI activity that is at all time consuming must NOT occur on that queue.
We want our UI to be responsive!

Blocks are pulled off and worked on in the main queue only when it is “quiet”.

@ Other Queues

Mostly iOS will create these for us as needed.
We'll give a quick overview of how to create your own (but usually not necessary).

Multithreading

@ Executing a block on another queue
dispatch guete t queue:= i ;
dispatch_async(queue, ~{ });

@ Getting the main queue
dispatch_queue_t mainQ = dispatch_get_main_queue();
NSOperationQueue *mainQ = [NSOperationQueue mainQueue]; // for object-oriented APIs

@ Creating a queue (not the main queue)

dispatch_queue_t otherQ = dispatch_queue create(“name”, NULL); // name a const char x!

@ Easy mode ... invoking a method on the main queue

NSObject method ...
— (void)performSelectorOnMainThread: (SEL)aMethod

withObject: (id)obj
waitUntilDone: (BOOL)waitUntilDone;

dispatch_async(dispatch_get_main_queue(), ~{ /% call aMethod */ });

Multithreading

@ Example of an iOS API that uses multithreading
NSURLRequest *xrequest = [NSURLRequest requestWithURL: [NSURL urlWithString:@“http://..."11;
NSURLConfiguration xconfiguration = ..;
NSURLSession xsession = ..}
NSURLSessionDownloadTask *task;

task = [session downloadTaskWithRequest:request

completionHandler:”~(NSURL xlocalfile, NSURLResponse xresponse, NSError xerror) {

/* want to do UI things here, can I? x/
H;

[task resume]:

downloadTaskWithRequest:completionHandler: will do its work (downloading that URL)
NOT in the main thread (i.e. it will not block the UI while it waits on the network).

The completionHandler block above might execute on the main thread (or not)
depending on how you create the NSURLSession.
Lets look at the two options (on or off the main queue) ...

Multithreading

@ On the main queue ...

NSURLSession *xsession = [NSURLSession sessionWithConfiguration:configuration
delegate:nil
delegateQueue: [NSOperationQueue mainQueue]];
NSURLSessionDownloadTask *task;
task = [session downloadTaskWithRequest: request

completionHandler:~(NSURL xlocalfile, NSURLResponse xresponse, NSErr or xerror) A{

/* yes, can do UI things directly because this is called on the main queue */
H;

[task resume]:

Since the delegateQueue is the main queue, our completionHandler will be on the main queue.
When the URL is done downloading, the block above will execute on the main queue.

Thus we can do any UI code we want there.

Of course, if you are doing non-UI things here, theyd best be quick (dont block main queue!).

Multithreading

@ Off the main queue ...

NSURLSession *xsession = [NSURLSession sessionWithConfiguration:configuration]; // no delegateQueue
NSURLSessionDownloadTask *task;
task = [session downloadTaskWithRequest: request
completionHandler:~(NSURL xlocalfile, NSURLResponse xresponse, NSError xerror) {
dispatch_async(dispatch_get_main_queue(), ~{ /* do UI things */ });
or [self performSelectorOnMainThread:@selector(doUIthings) withObject:nil waitUntilDone:NO];
FI%

[task resumel;

In this case, you cant do any UI stuff because the completionHandler is not on the main queue.
To do UI stuff, you have to post a block (or call a method) back on the main queue (as shown).

UIScrollView

it

Messages Calendar Photos YouTube

Adding subviews to a normal UIView ..

subview. frame = ...;
[view addSubview:subview];

"

Adding subviews to a normal UIView ..

subview.frame = ...;
[view addSubview:subview];

L

‘ﬂ-,ﬁ:nFTTTﬂ

=TI

b
FPF BB FFP

Adding subviews to a normal UIView ..

subview. frame = ...;
[view addSubview:subview]:

(_____ _ A

Adding subviews fo a UIScrollView ..

Adding subviews to a UIScrollView ..

scrollView.contentSize = CGSizeMake (3000, 2000);

JI

Adding subviews to a UIScrollView ..

scrollView.contentSize = CGSizeMake (3000, 2000);
subviewl.frame = CGRectMake(2700, 100, 120, 180);
[view addSubview:subviewl];

Adding subviews fo a UIScrollView ..

scrollView.contentSize = CGSizeMake (3000, 2000);
subview2.frame = CGRectMake(50, 100, 2500, 1600);
[view addSubview:subview2];

i ket NI

'BPP BB EEE BE NP RS BF FEE g

Adding subviews o a UIScrollView ..

Adding subviews o a UIScrollView ..

Adding subviews to a UIScrollView ..

Adding subviews to a UIScrollView

(1) |

YL ii[l'

ol 4 - ; |
§F EF BEE BF FER

Adding subviews o a UIScrollView ..

Positioning subviews in a UIScrollView ...

i ket NI

L L

Positioning subviews in a UIScrollView ...
subviewl.frame = CGRectMake(2250, 50, 120, 180);

i ket NI

Positioning subviews in a UIScrollView ...
subview2.frame = CGRectMake(@, 0, 2500, 1600);

Eise Kmf NDE

L
£

Positioning subviews in a UIScrollView ..

subview2.frame = CGRectMake(@, @, 2500, 1600);
scrollView.contentSize = CGSizeMake (2500, 1600);

(1)

bl e e

FPF PN FFF FF

e

/O

/O

QI

/O

Upper left corner of currently-showing area

scrollView.contentOffset;

CGPoint upperLeftOfVisible
In content area’s coordinates.

T R R

FPE BN FFF FF FF

Visible area of a scroll view

scrollView.bounds

:M'z')"f))?z. G

e

T W '-'I
EEE FF WP

Visible area of a scroll views subview in that views coordinates

CGRect visibleRect = [scrollView convertRect:scrollView.bounds toView:subview];
Whats the difference? Might be scaled (due to zooming), for example.

14
BEEE amt
e 1
PN FEP FF FP

UIScrollView

@ How do Yyou create one?

Just like any other UIView. Drag out in a storyboard or use alloc/initWithFrame:.
Or select a UIView in your storyboard and choose "Embed In -> Scroll View” from Editor menu.

@ Or add your "too big” UIView using addSubview:
UIImage ximage = [UIImage imageNamed:@“bigimage.jpg”];
UIImageView xiv = [[UIImageView alloc] initWithImage:imagel; // frame.size = image.size
[scrollView addSubview:iv];
Add more subviews if you want.

All of the subviews’ frames will be in the UIScrollViews content area$s coordinate system
(that is, (0,0) in the upper left & width and height of contentSize.width & .height).

@ Dont forget to set the contentSize

Common bug is to do the above 3 lines of code (or embed in Xcode) and forget to say:
scrollView.contentSize = imageView.bounds.size

UIScrollView

@ Scrolling programmatically
— (void)scrollRectToVisible: (CGRect)aRect animated: (BOOL)animated;

@ Other things you can control in a scroll view
Whether scrolling is enabled.
Locking scroll direction to users first "move”.
The style of the scroll indicators (call flashScrollIndicators when your scroll view appears).
Whether the actual content is “inset” from the content area (contentInset property).

UIScrollView

@ Zooming
All UIViews have a property (transform) which is an affine transform (translate, scale, rotate).
Scroll view simply modifies this transform when you zoom.

Zooming is also going to affect the scroll views contentSize and contentOffset.

@ Will not work without minimum/maximum zoom scale being set
scrollView.minimumZoomScale = 0.5; // 0.5 means half its normal size
scrollView.maximumZoomScale = 2.0; // 2.0 means twice its normal size

@ Will not work without delegate method to specify view to zoom

— (UIView x)viewForZoomingInScrollView: (UIScrollView *)sender;
If your scroll view only has one subview, you return it here. More than one? Up to you.

@ Zooming programatically
@property (nonatomic) float zoomScale;
— (void)setZoomScale: (float)scale animated: (BOOL)animated;
— (void)zoomToRect: (CGRect)zoomRect animated: (BOOL)animated;

scrollView.zoomScale = 1.2;

scrollView.zoomScale = 1.0;

scrollView.zoomScale = 1.2;

- (void)zoomToRect:(CGRect)rect animated:(BOOL)animated;

- (void)zoomToRect:(CGRect)rect animated:(BOOL)animated;

- (void)zoomToRect:(CGRect)rect animated:(BOOL)animated;

- (void)zoomToRect:(CGRect)rect animated:(BOOL)animated;

UIScrollView

@ Lots and lots of delegate methods!

The scroll view will keep you up to date with whats going on.

@ Example: delegate method will notify you when zooming ends
— (void)scrollViewDidEndZooming: (UIScrollView *)sender
withView: (UIView *)zoomView // from delegate method above
atScale: (CGFloat)scale;
If you redraw your view at the new scale, be sure fto reset the transform back to identity.

Demo

@ Imaginarium

UIImageView inside a UIScrollView
Multithreaded download from a URL
UIActivityIndicatorView fo show user that a download is in progress

Coming Up

® Wednesday
More UITableView (with demo)
iPad

@ Homework
Next Homework will be assigned on Wednesday, due the next Wednesday.

@ Friday

Stanford Only Review Section

@ Next Week

Core Data (Object-Oriented Database)

