
Stanford CS193p

Fall 2013

Stanford CS193p
Developing Applications for iOS

Fall 2013-14

Stanford CS193p

Fall 2013

Coming Up
Wednesday

Alternate Final Presentation.

If you are using Alternate Presentation time, submit your Keynote by noon tomorrow (Tuesday).

Submit the slides using the normal submit script (submit again with code by Sunday).

We will have a “live demo testing” opportunity on Wednesday as well, so bring your demo device.

Friday

No Section.

Sunday

Final Project Due (by midnight).

Don’t forget to submit your Keynote slides along with!

Final

A week from Thursday at 12:15pm to 3:15pm in this room.

Presentation is required.

Presentation time limit is 2.5 minutes (150 seconds) and must be 1280x720 aspect ratio.

Presentation order is random (no exceptions).

Stanford CS193p

Fall 2013

Today
Localization

Internationalization really.

Settings

Adding UI to the Settings application.

Demo

Internationalizing Photomania.

Adding a Bouncer setting.

Stanford CS193p

Fall 2013

Internationalization
Two steps to making international versions of your application
Internationalization (i18n)
Localization (l10n)

Internationalization
This is a process of making strings externally editable (from storyboard or code).
It also involves using certain “formatting” classes for things like dates, numbers, etc.
You (the developer) get to do this work.

Localization
A process of editing those externalized strings (and then QA’ing the result) for a given language.
You usually hire a localization company to do this work.

Stanford CS193p

Fall 2013

Storyboards are localized by changing its strings only
And we rely on Autolayout to make it all look nice.

First step though: Registering Localizable Languages
Go to the Project pane in Xcode (top in Navigator), then Info tab to add Localizations.
If you click “Use Base Internationalization” the strings in your storyboards will be extracted
 into editable .strings files (one for each language).

“Base” is the “localization” where storyboards
live that are localizable using only .strings files

(hopefully this is all storyboards).

Internationalization

You must inspect the project itself
here, not the Target you build.

Click this + to add more languages
that you intend to support.

Stanford CS193p

Fall 2013

Localizing Storyboards
Storyboards in Navigator will now have localizations

Send the .strings files out to localizers to translate the strings.

Localizers appreciate a demo of your application in your Base language.

Or at least send them the storyboards so they can get context.

File InspectorNavigator

Stanford CS193p

Fall 2013

Internationalization
What about strings not in storyboards?

i.e., literal strings @“string”
Replace them with a variant of NSLocalizedString …

NSString *NSLocalizedStringWithDefaultValue(NSString *key, NSString *table,
 NSString *bundle, NSString *defaultValue,
 NSString *comment); // comment is for localizers
Also NSLocalizedStringFromTableInBundle() (defaultValue is the key)
 and NSLocalizedStringFromTable() (defaultValue is the key and uses mainBundle)
 and NSLocalizedString() (defaultValue is key; mainBundle; table Localizable.strings)
Example: Change @“hello” to NSLocalizedString(@“hello”, @“Greeting at start of application.”)

What these macros do ...

They send this method to [NSBundle mainBundle] (or the specified bundle if macro takes one) ...
- (NSString *)localizedStringForKey:(NSString *)key
 value:(NSString *)defaultValue // if nil, will be key
 table:(NSString *)tableName; // if nil: Localizable.strings

Stanford CS193p

Fall 2013

Localization
Generating .strings files with genstrings

Once you have used NSLocalizedString and its variants to eliminate literal strings ...
You can use the command line utility genstrings to generate .strings files from .m files.
> cd <directory where all your .m files are>

> genstrings *.m
Example: NSLocalizedString(@“hello”, @“Greeting at start of application.”)

 ... would generate an entry in Localizable.strings which looks like this ...
/* Greeting at start of application. */
“hello” = “hello”;

Drag the .strings into Xcode and then inspect to Localize

Hit the button “Localize” in the File Inspector on the strings file or storyboard.
You can then pick languages for which there is a localization set up for your application.
 (As per the first slide on this topic.)

E.g., French localizers would change entry to “hello” = “bonjour”.

Stanford CS193p

Fall 2013

Bundles
Resources are drawn from a “bundle” using the user’s locale
Inside a bundle, there will be “.lproj” directories (e.g. en.lproj, fr.lproj, etc.).
Inside these .lproj directories, there will be .strings files, images, sounds, etc.
When you get a path to a file from a bundle, it tries top-level first, then searches .lprojs
 (depending on the language the user has chosen for his system in Settings app).

Bundles can be associated with a framework or an application

Using NSBundle API to get a resource (e.g. an image or sound)
NSBundle *bundle = [NSBundle bundleForClass:[self class]];
NSString *path = [bundle pathForResource:@“speedlimit” ofType:@“jpg”];
bundleForClass: knows whether that class came from a framework or just with the application.

Stanford CS193p

Fall 2013

Localization
Debugging

Set the NSUserDefault NSShowNonLocalizedStrings to YES and a message will be logged to the
 console whenever these NSLocalizedString methods cannot find a string.

Build Clean

If changes you make to .strings files don’t seem to be appearing when you run … try Build Clean.

Usually this is not necessary, but it’s something to try if things get out of sync.

Stanford CS193p

Fall 2013

Locales
Formats

Dates and numbers are written in different formats in different locales.

Locale

Locale is different from language.
The NSLocale class encapsulates the locale the user has chosen in Settings.
It knows all about date and number formats (independent of the language that is currently set).
+ (NSLocale *)currentLocale;
+ (NSLocale *)autoupdatingCurrentLocale; // watch NSCurrentLocaleDidChangeNotification
Usually you don’t need to access this directly because you’ll use a formatter which is looking at it.

Stanford CS193p

Fall 2013

NSNumberFormatter
Lots going on here. Check out the documentation.
But we’ll look at two simple cases ...

Displaying numbers

Shouldn’t really use [NSString stringWithFormat:@“%g”] for user-visible floats.
Instead use this NSNumberFormatter class method ...

+ (NSString *)localizedStringFromNumber:(NSNumber *)number
 numberStyle:(NSNumberFormatterStyle)style
Example styles: NSNumberFormatterDecimalStyle or CurrencyStyle or even SpellOutStyle

Parsing numbers

Don’t use intValue to parse a number typed in by the user, use ...
NSNumberFormatter *formatter = [[NSNumberFormatter alloc] init];
[formatter setNumberStyle:NSNumberFormatterDecimalStyle];
NSNumber *parsedNumber = [formatter numberFromString:userInputtedString];
Note that this will return nil if a number of the proper format is not found.
That can be valuable to differentiate from the user entering “zero” for example.

Stanford CS193p

Fall 2013

NSDateFormatter
Dates are rather complicated to display properly

If you are presenting dates to the user, familiarize yourself with these concepts ...
Calendars. Not all locales use the Gregorian calendar that we do. NSCalendar.
Date Components, e.g., what is a “month” (calendar dependent)? NSDateComponents.
And if you have in mind something like MM/DD/YYYY, check out this method first ...
+ (NSString *)dateFormatFromTemplate:(NSString *)template
 options:(NSUInteger)options
 locale:(NSLocale *)locale;

Simple date formatting

At least use this NSDateFormatter class method ...
+ (NSString *)localizedStringFromDate:(NSDate *)date
 dateStyle:(NSDateFormatterStyle)dateStyle
 timeStyle:(NSDateFormatterStyle)timeStyle;
Example styles: NSDateFormatterShortStyle or MediumStyle or LongStyle or FullStyle

Stanford CS193p

Fall 2013

NSString
Searching in strings

Do not use plain rangeOfString: if you are looking around in user-inputted strings.

Instead, use this ...
+ (NSRange)rangeOfString:(NSString *)useEnteredSubstring
 options:(NSStringCompareOptions)options // e.g. case-insensitively
 range:(NSRange)rangeToSearchIn
 locale:(NSLocale *)locale;
... especially if you are searching case-insensitively, since this concept is locale-specific.

Stanford CS193p

Fall 2013

UIImage
The method imageNamed: does the right thing!

It searches inside the .lproj’s to find images.

Stanford CS193p

Fall 2013

Demo
Photomania

Let’s internationalize it.

Stanford CS193p

Fall 2013

Settings
A little bit of UI for your application in the Settings application
You should use this sparingly (if at all).
It’s appropriate only for very rarely used settings or default behavior.
You don’t want to make your users ever have to go here for normal use of your application.
The settings appear in your application via NSUserDefaults.
You specify the UI and the associated defaults in a property list file.

Stanford CS193p

Fall 2013

Settings

Choose New File... from the File menu, then pick
Settings Bundle from the Resource grouping.

Stanford CS193p

Fall 2013

A sort of “example”
settings bundle will be

created for you. You can
edit it by clicking here.

Check the documentation

for all the possibilities.

It is possible to have multiple “pages” of settings.

See documentation for details.

Settings

Stanford CS193p

Fall 2013

The sample from the
previous slide would result in

a Settings UI like this.

Settings

Stanford CS193p

Fall 2013

Settings

Note the en.lproj.

Yes, settings are

localizable, but it’s not very
well supported in Xcode.

Each language has a strings file for
each Settings page

(e.g., Root.strings is the name of the
.strings file to localize the

Root.plist page of the settings).

Stanford CS193p

Fall 2013

Settings
Unfortunately, localization of settings is a bit of a pain
You have to find the Settings.bundle in your Finder and create .lproj directories yourself.
Each .lproj directory should contain a .strings file for each screen in your settings.

Copy and paste en.lproj to other languages

(like fr.lproj), then edit the Root.strings

(or other .strings files) inside for each language.

Stanford CS193p

Fall 2013

Demo
Bouncer

Allow setting the Elasticity from Settings.

Stanford CS193p

Fall 2013

Coming Up
Wednesday

Alternate Final Presentation.

If you are using Alternate Presentation time, submit your Keynote by noon tomorrow (Tuesday).

Submit the slides using the normal submit script (submit again with code by Sunday).

We will have a “live demo testing” opportunity on Wednesday as well, so bring your demo device.

Friday

No Section.

Sunday

Final Project Due (by midnight).

Don’t forget to submit your Keynote slides along with!

Final

A week from Thursday at 12:15pm to 3:15pm in this room.

Presentation is required.

Presentation time limit is 2.5 minutes (150 seconds) and must be 1280x720 aspect ratio.

Presentation order is random (no exceptions).

