
ELSEVIER Information Processing Letters 57 (1996) 65-69

Information
Processing
Letters

An 0(y1 log n) implementation of the standard method for
rninimizing n-state finite automata

Norbert Blum ’
Infornmtik IC: Universitiit Bonn, Riimerstr. 164, D-5311 7 Bonn, Germany

Received 25 April 1994; revised 22 November 1995

Communicated by H. Ganzinger

Abstract

More than 20 years ago, Hopcroft (1971) has given an algorithm for minimizing an n-state finite automaton in 0(kn log n)
time where k is the size of the alphabet. This contrasts to the usual 0(/o?) algorithms presented in text books. Since
Hopcroft’s algorithm changes the standard method, a nontrivial correctness proof for its method is needed. In lectures given
at university, mostly the standard method and its straightforward 0(kn’) implementation is presented. We show that a slight
modification of the O(kn’) implementation combined with the use of a simple data structure composed of chained lists
and four arrays of pointers (essentially the same as Hopcroft’s data structure) leads to an 0(kn log n) implementation of
the standard method. Thus, it is possible to present in lectures, with a little additional amount of time, an O(kn log n) time
algorithm for minimizing n-state finite automata.

Keywords: Algorithms; Finite automata; Minimization

1. The standard method

We assume that the reader is familiar with the ele-
mentary theory of finite automata as written in stan-

dard text books, e.g. [2,3,5,9]. First, we will review
the notations used in the subsequence.

Let M = (Q, 2, S, qo, F) be a finite automaton,
where Q is a finite set of states, _Z is a finite, nonempty
set of input symbols, S is a transition function map-
ping Q x _Z to Q, qo E Q is the initial state, and F g Q
is the set of finite states. We extend S to Q x (BJ {c})
by the arrangement S(q, E) = q for all q E Q. For
S C_ Q we define S(S, a) = UqES 6(q, a). Two finite
automata are equivalent, if they accept the same lan-

’ Email: blum@cs.uni-bonn.de.

guage. M is minimal if no equivalent finite automaton
has fewer states than M. Given a finite automaton M,
our goal is to compute an equivalent minimal finite
automaton. A summary of the known finite automata
minimization algorithms is given in [81.

The standard method for the computation of an
equivalent minimal finite automaton from a given fi-
nite automaton M = (Q, X,6, qo, F) dues to Huffman
and Moore [6,7]. The usual implementation as given
in text books uses 0(kn*) time, where n =] Q 1 and
k = 121. Next we will sketch the standard method as
described for instance in [2,3,9].

We say that x E z1* distinguishes q,p E Q if
6(q, x) E F and 6(p, n) +! F, or vice versa. We say
that q is distinguishable from p if there exists x E Z*
which distinguishes q and p. If q and p are not distin-

0020-0190/96/$12.00 @ 1996 Elsevier Science B.V. All rights reserved

SSDIOO20-0190(95)00199-9

66 N. Blum/lnformation Processing Letters 57 (1996) 65-69

guishable, then q and p are equivalent, written q E p.
A state q E Q is inaccessible if there is no x E Z*

with S(q0, x) = q. By the Myhill-Nerode theorem

(see [51)) a finite automaton M = (Q, X,6, qo, F) is
minimal if and only if no state in Q is inaccessible and

no two distinct states in Q are equivalent. It is easy to
delete all inaccessible states from a finite automaton
in linear time (see Algorithm 0.3 in [21) . Hence, we
can assume that in the given finite automaton M, no

states are inaccessible.
Let M = (Q, _Z, 6, go, F) be a finite automaton with

no inaccessible states. Then, the computation of an
equivalent minimal finite automaton is reduced to the
computation of the equivalence classes of Q with re-
spect to the relation E, followed by the straight for-
ward modification of the transition function 8. By def-
inition, we obtain

q f p iff there is a E 2: 6(q, a) $ S(p, a).

This led to the following standard method.

Algorithm DFA ---+ DFAtii,

Input: A finite automaton A4 = (Q. 2, 6, qo, F) with
no inaccessible states.

Output: A minimal finite automaton M’ = (Q’, 2, 8,

qh, F’).

Method:

(1)
(2)

(3)

t := 2; Qo := {undefined}; Ql := F; Q2 := Q \ F.
while there is 0 < i < t, a E 2 with S(Qi, a) g

Qj, for allj < t
do
1. Choose such an i, a E 2, and j < t with

&Qi.a) nQj f 0.
2. C?;+;:;,'e,'Qi I Rs,a) E Qj};

.-
tI=t+tl.

r+1;

od.
(* Let [q] , q E Q be the equivalence class Qr
with q E Qi. *)

Q':={QI,QL...,Q&
4; := [qol.
F’ := {[q] E Q’ 1 q E F}.

S’([q],a) := [S(q,a)] for all q E Q. a E 2.

It is easy to see that the time complexity of the
straight forward implementation of the standard
method is 0(kn2). Note that the initialization of the
algorithm can be generalized to any starting equiv-
alence relation or its partition, respectively. Hence
we can minimize with the standard method finite au-
tomata with distinguished finite states, too. Hopcroft’s
algorithm is presented within this general framework

in [I].

2. An O(kn log n) implementation of the standard
method

Step 2 is the only part of the algorithm which is not
easily implemented in linear time. The straight for-
ward implementation for checking the condition of the
while loop, and for the execution of the body of the
while loop is time consuming. Hence, 0(kn2) time is
needed in the worst case. For speeding up the execu-
tion of the body of the while loop, we will modify the

body slightly such that we can ensure for all q E Q

that the name of the class which contains q changes

at most logn times,

Modijkation of the body of the while loop:

1. Choose such an i, a E 2, and choose ji , j2 6 t with

jl + jz,&Qi,a)nQj, + 0,md&Qi9a>nQjz +
0.

2. If/{q~ Qi I &q,a) E Qjl}l
6 l{qE Qi I Nq,a) E Qjz)I

then Qt+l :={q E Qi I &q,a) E Qj,)
elseQ,+~ :={q~ Qi I Nq,a) E Qjz} fi;
Qi :=Qi \ Qt+l;
t:=t+l.

By the choice of i, it is clear that jt , j2 exists. Note
that with respect to Qi, before the definition of Q,+l ,

lQt+ll G 1/2IQiI.

Hence, for all q E Q the name of the class which
q contains changes at most logn times. Our goal is
to develop an implementation such that all work can
be assigned to transitions containing a state for which
the name of the corresponding class is changed. Next
we will introduce a data structure which enables an
0(kn log n) implementation of the modified Step 2.

N. Blum/lnformation Processing Letters 57 (1996) 65-69 61

This data structure has to support the following oper-
ations:

1. The choice of i < f, u E 2 with S(Qi, U) g Qj for
all j 6 t;

2. the choice of ji, j:! < t with jl # jz, S(Qi, a) n
Q.i, + 0, and &QL a) n Qi2 f 0;

3. the decision if]{q E Qi 1 S(q,a) E Qi,}l < l{q E

Q; I @q,a> E Qjz}I; and
4. the construction of Q’,l .

Let D, denote the data structure obtained directly
after the construction of Q’, t 2 2. Essentially, D’
coarsen the transition function S to 8 C [1 ..t] x _Z x

[l..t], defined by

(i,u,jl),(i,u,j2)inA’(i,a).WithhelpofS(i,u,ji)
and S(i,a,jz) decide if IL(i,u,jl>l 6 IL(i,u,j2)1.

Let L(i,u, jti,) denote the shorter list. Change the
first component of the triple (i, a, j,,) from i to t +

1. Now, the old list L(i, a, jh,) is the list L(t +

1, a, jti,), and hence, S(t + 1, a, j,,) is equal to
S(i, a, jti,). Delete the pointer to L(i, a, jti,) from
A’(i, a), and insert a pointer which points now to

L(t + l,u,j,,,t”) into a new list A’(t + 1,~). If the
length of the list A’(i, a) is now smaller than 2, then
delete the pointer to A’(i, a) from K.

(ii) For all q in L(t + 1, u, j,,), we update the
data structure in the following way:

(i, a, j) E 6’ iff there is q E Qi, p E Qj

with 6(q, a) = p.

For each triple (i, a, j) E 8, D, contains a doubly
chained list L(i, a, j) which contains exactly those
states q in Qi with S(q, a) is in Qj. Each element in
the list has an additional pointer to the head of the list
which contains all needed information. The size of the

list L(i, a, j) is stored in the variable S(i, a, j) such
that the size can be checked in constant time. Addition-

ally, we have a IQ] x]Z] -array A and a 121 x IQ]-array
A-‘. The component A(p, a), p E Q,u E 2 contains
a pointer to the unique record, containing p with re-
spect to the lists L(1, a, .>. Note that the finite automa-

ton is deterministic. The component A-’ (6, q) , b E
2, q E Q contains a pointer to a list containing exactly
those states p E Q with 6(p, b) = q. We will identify
this set of states with A-’ (b, q). For each pair (i, a),

i E [l,.t], a E 2, we update a list A’(i,u), contain-
ing pointers to those L(i, a, j) with (i, a, j) E 8. The

head of list L(i, a, j) contains a pointer to the element
in list A’(i, a) which points to L(i, a, j). In a set K,

we maintain pointers to those lists A’(i,u) of length
> 2. The head of A’(i, a) contains a pointer to the ele-
ment of K which points to A’(i, a). The data structure
is illustrated by Fig. I. In addition to D’, we need two
arrays r and r’ for the efficient computation of V’+i .

(1) For all b E 2 \ {a}, we use A(q, 6) for find-
ing the unique record which contains q with respect to
the lists L(i, b, .), if it exists. Assume that L(i, 6, k)

is the list containing this record. Then we delete this
record from L(i, b, k), inserting it into L(t + 1, b, k).

For the efficient determination of L(t + 1, b, k), we
maintain an additional 1 Z/ x IQl-array r. The com-

ponent r(b, k) contains a pointer to the last gener-
ated list L(j, b, k). If j # t + 1, then we have to
generate a new list. S(i, b, k) is decreased by 1, and

S(t + 1, b, k) is increased by 1. If L(i, b, k) becomes
empty, we delete the pointer to L(i, b, k) from A’(i, 6)

and eventually, the pointer to A’(i, b) from K. In the
case that L(t + 1, b, k) gets defined, we have to add
toA’(t+l,b)apointertoL(t+l,b,k),andeven-
tually, we have to add to K a pointer to A’(t + 1, b).

r(b, k) is modified appropriately.

It is easy to see that at the beginning, the data struc-
ture 272 can be constructed in 0(kn) time. Given the
structure D,, we will describe how to perform Step 2
with respect to the construction of V’+t .

(2) For all b E 2, for all p E A-’ (b, q), we use

A(p, b) for finding the unique record which contains
p with respect to the lists L(., b, i), if it exists. As-
sume that L(k, b, i) contains p. Then we delete p from
this list, inserting it into .I,(k, b, I + 1) . Analogously

to above, we maintain an additional IQ I x 1 Xl-array r’
such that Z,(k, b, t + 1) can be determined in constant
time. S(k, b, i) is decreased by 1, and S(k, b, tf 1) is
increased by I. If L(k, 6, i) becomes empty, we delete
the pointer to L(k, b, i) from A’(k, b) and eventu-
ally, the pointer to A’(k, b) from K. In the case that
L(k, b, t + 1) gets defined, we have to add to A’(k, b)

a pointer to L(k, b, t + 1) , and eventually, we have to
add to K a pointer to A’(k, 6). r’(k, b) is modified
appropriately.

(i) Use the set K for obtaining a list A’(i, a) of By construction, it is easy to see that the structure
length > 2 in constant time, and choose any two triples D,+i is correctly computed. Note that after the termi-

68 N. Blum/Information Processing Letters 57 (1996) 65-69

‘i,a,j): fi=y \
1921)p+q. 1 PI &I +- -

ii
K

?I 11’ ”

6’ , 4 Ia
1 J_L_______~_L_________I_

__‘-_______ I I ‘$ _.)_r_________;_ r:-r------

Fig. 1.

nation of the algorithm, the resulting 6’ is the transition
function of the minimal finite automaton. It remains

to check the time complexity.
Step (i) needs only constant time. In Step (ii. 1) and

Step (ii.Z), the total time for transferring one record
from one list to another list is constant. Every time a
record is moved in Step (ii. 1), a transition 6(q, a) = p
of the transition function for which q has changed the
name of its class is considered. Every time a record
is moved in Step (ii.2), a transition S(p, a) = q of
the transition function for which q has changed the
name of its class, is considered. Hence, every time
such a transition is considered, at least one of the two
states in this transition has changed the name of its
class. Hence, each transition in S is considered at most
2 logn times. There are at most kn transitions in 8.
Hence, the total time used for Step (ii) is bounded by
0(kn log n) . Altogether we have obtained the follow-
ing theorem.

Theorem 1. The standard method for minimizing an
n-statejnite automaton can be implemented such that
the used time is 0(kn log n) .

Acknowledgment

I thank Burchard von Braunmiihl and Claus Rick
for critical remarks.

References

A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design
and Analysis of Computer Algorithms (Addison-Wesley,

Reading, MA, 1974) 157-162.

A.V. Aho and J.D. Ullman, The Theory of Parsing,
Translation and Compiling, Vol. I: Parsing (Prentice-Hall,

Englewood Cliffs, NJ, 1972).

W. Brauer, Automatentheorie (Teubner, Stuttgart, 1984).

N. Blum/lnformation Processing Letters 57 (1996) 65-69 69

141 J.E. Hopcroft, An n logn algorithm for minimizing the states

in a finite automaton, in: Z. Kohavi, ed., The Theory of

Machines and Computations (Academic Press, New York,

1971) 189-196.

151 J.E. Hopcroft and J.D. Ullman, Introduction to Automata

Theory, Lunguages and Computation (Addison-Wesley,

Reading, MA, 1979).
161 D.A. Huffman, The synthesis of sequential switching circuits,

J. Franklin Institute 257 (1954) 3-4, 161-190, 275-303.

[7] E.F. Moore, Gedanken experiments on sequential machines,

in: C.E. Shannon and J. McCarthy, eds., Automata Studies

(Princeton University Press, Princeton, NJ, 1956) 129-153.

[81 B.W. Watson, A taxonomy of finite automata minimization

algorithms, Computing Science Rept. 93/44, Eindhoven

University of Technology, The Netherlands, 1993.

[9] D. Wood, Theory of Computation (Harper & Row, New

York, 1987).

