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Abstract 

More than 20 years ago, Hopcroft ( 1971) has given an algorithm for minimizing an n-state finite automaton in 0( kn log n) 
time where k is the size of the alphabet. This contrasts to the usual 0(/o?) algorithms presented in text books. Since 
Hopcroft’s algorithm changes the standard method, a nontrivial correctness proof for its method is needed. In lectures given 
at university, mostly the standard method and its straightforward 0( kn’) implementation is presented. We show that a slight 
modification of the O(kn’) implementation combined with the use of a simple data structure composed of chained lists 
and four arrays of pointers (essentially the same as Hopcroft’s data structure) leads to an 0( kn log n) implementation of 
the standard method. Thus, it is possible to present in lectures, with a little additional amount of time, an O(kn log n) time 
algorithm for minimizing n-state finite automata. 
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1. The standard method 

We assume that the reader is familiar with the ele- 
mentary theory of finite automata as written in stan- 

dard text books, e.g. [ 2,3,5,9]. First, we will review 
the notations used in the subsequence. 

Let M = (Q, 2, S, qo, F) be a finite automaton, 
where Q is a finite set of states, _Z is a finite, nonempty 
set of input symbols, S is a transition function map- 
ping Q x _Z to Q, qo E Q is the initial state, and F g Q 
is the set of finite states. We extend S to Q x (BJ {c}) 
by the arrangement S(q, E) = q for all q E Q. For 
S C_ Q we define S( S, a) = UqES 6( q, a). Two finite 
automata are equivalent, if they accept the same lan- 
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guage. M is minimal if no equivalent finite automaton 
has fewer states than M. Given a finite automaton M, 
our goal is to compute an equivalent minimal finite 
automaton. A summary of the known finite automata 
minimization algorithms is given in [ 81. 

The standard method for the computation of an 
equivalent minimal finite automaton from a given fi- 
nite automaton M = (Q, X,6, qo, F) dues to Huffman 
and Moore [ 6,7]. The usual implementation as given 
in text books uses 0( kn*) time, where n = ] Q 1 and 
k = 121. Next we will sketch the standard method as 
described for instance in [ 2,3,9]. 

We say that x E z1* distinguishes q,p E Q if 
6(q, x) E F and 6(p, n) +! F, or vice versa. We say 
that q is distinguishable from p if there exists x E Z* 
which distinguishes q and p. If q and p are not distin- 
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guishable, then q and p are equivalent, written q E p. 
A state q E Q is inaccessible if there is no x E Z* 

with S(q0, x) = q. By the Myhill-Nerode theorem 

(see [ 51)) a finite automaton M = (Q, X,6, qo, F) is 
minimal if and only if no state in Q is inaccessible and 

no two distinct states in Q are equivalent. It is easy to 
delete all inaccessible states from a finite automaton 
in linear time (see Algorithm 0.3 in [ 21) . Hence, we 
can assume that in the given finite automaton M, no 

states are inaccessible. 
Let M = (Q, _Z, 6, go, F) be a finite automaton with 

no inaccessible states. Then, the computation of an 
equivalent minimal finite automaton is reduced to the 
computation of the equivalence classes of Q with re- 
spect to the relation E, followed by the straight for- 
ward modification of the transition function 8. By def- 
inition, we obtain 

q f p iff there is a E 2: 6( q, a) $ S(p, a). 

This led to the following standard method. 

Algorithm DFA ---+ DFAtii, 

Input: A finite automaton A4 = (Q. 2, 6, qo, F) with 
no inaccessible states. 

Output: A minimal finite automaton M’ = (Q’, 2, 8, 

qh, F’). 

Method: 

(1) 
(2) 

(3) 

t := 2; Qo := {undefined}; Ql := F; Q2 := Q \ F. 
while there is 0 < i < t, a E 2 with S( Qi, a) g 

Qj, for allj < t 
do 
1. Choose such an i, a E 2, and j < t with 

&Qi.a) nQj f 0. 
2. C?;+;:;,'e,'Qi I Rs,a) E Qj}; 

.- 
tI=t+tl. 

r+1; 

od. 
(* Let [q] , q E Q be the equivalence class Qr 
with q E Qi. *) 

Q':={QI,QL...,Q& 
4; := [qol. 
F’ := {[q] E Q’ 1 q E F}. 

S’( [q],a) := [S(q,a)] for all q E Q. a E 2. 

It is easy to see that the time complexity of the 
straight forward implementation of the standard 
method is 0( kn2). Note that the initialization of the 
algorithm can be generalized to any starting equiv- 
alence relation or its partition, respectively. Hence 
we can minimize with the standard method finite au- 
tomata with distinguished finite states, too. Hopcroft’s 
algorithm is presented within this general framework 

in [I]. 

2. An O(kn log n) implementation of the standard 
method 

Step 2 is the only part of the algorithm which is not 
easily implemented in linear time. The straight for- 
ward implementation for checking the condition of the 
while loop, and for the execution of the body of the 
while loop is time consuming. Hence, 0( kn2) time is 
needed in the worst case. For speeding up the execu- 
tion of the body of the while loop, we will modify the 

body slightly such that we can ensure for all q E Q 

that the name of the class which contains q changes 

at most logn times, 

Modijkation of the body of the while loop: 

1. Choose such an i, a E 2, and choose ji , j2 6 t with 

jl + jz,&Qi,a)nQj, + 0,md&Qi9a>nQjz + 
0. 

2. If/{q~ Qi I &q,a) E Qjl}l 
6 l{qE Qi I Nq,a) E Qjz)I 

then Qt+l :={q E Qi I &q,a) E Qj,) 
elseQ,+~ :={q~ Qi I Nq,a) E Qjz} fi; 
Qi :=Qi \ Qt+l; 
t:=t+l. 

By the choice of i, it is clear that jt , j2 exists. Note 
that with respect to Qi, before the definition of Q,+l , 

lQt+ll G 1/2IQiI. 

Hence, for all q E Q the name of the class which 
q contains changes at most logn times. Our goal is 
to develop an implementation such that all work can 
be assigned to transitions containing a state for which 
the name of the corresponding class is changed. Next 
we will introduce a data structure which enables an 
0( kn log n) implementation of the modified Step 2. 
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This data structure has to support the following oper- 
ations: 

1. The choice of i < f, u E 2 with S( Qi, U) g Qj for 
all j 6 t; 

2. the choice of ji, j:! < t with jl # jz, S(Qi, a) n 
Q.i, + 0, and &QL a) n Qi2 f 0; 

3. the decision if ]{q E Qi 1 S(q,a) E Qi,}l < l{q E 

Q; I @q,a> E Qjz}I; and 
4. the construction of Q’,l . 

Let D, denote the data structure obtained directly 
after the construction of Q’, t 2 2. Essentially, D’ 
coarsen the transition function S to 8 C [ 1 ..t] x _Z x 

[ l..t], defined by 

(i,u,jl),(i,u,j2)inA’(i,a).WithhelpofS(i,u,ji) 
and S(i,a,jz) decide if IL(i,u,jl>l 6 IL(i,u,j2)1. 

Let L(i,u, jti,) denote the shorter list. Change the 
first component of the triple (i, a, j,,) from i to t + 

1. Now, the old list L( i, a, jh,) is the list L( t + 

1, a, jti,), and hence, S( t + 1, a, j,,) is equal to 
S( i, a, jti,). Delete the pointer to L( i, a, jti,) from 
A’(i, a), and insert a pointer which points now to 

L(t + l,u,j,,,t”) into a new list A’(t + 1,~). If the 
length of the list A’(i, a) is now smaller than 2, then 
delete the pointer to A’( i, a) from K. 

(ii) For all q in L(t + 1, u, j,,), we update the 
data structure in the following way: 

(i, a, j) E 6’ iff there is q E Qi, p E Qj 

with 6(q, a) = p. 

For each triple (i, a, j) E 8, D, contains a doubly 
chained list L( i, a, j) which contains exactly those 
states q in Qi with S( q, a) is in Qj. Each element in 
the list has an additional pointer to the head of the list 
which contains all needed information. The size of the 

list L(i, a, j) is stored in the variable S(i, a, j) such 
that the size can be checked in constant time. Addition- 

ally, we have a IQ] x ]Z] -array A and a 121 x IQ]-array 
A-‘. The component A(p, a), p E Q,u E 2 contains 
a pointer to the unique record, containing p with re- 
spect to the lists L( 1, a, .>. Note that the finite automa- 

ton is deterministic. The component A-’ (6, q) , b E 
2, q E Q contains a pointer to a list containing exactly 
those states p E Q with 6(p, b) = q. We will identify 
this set of states with A-’ (b, q). For each pair (i, a), 

i E [ l,.t], a E 2, we update a list A’(i,u), contain- 
ing pointers to those L( i, a, j) with (i, a, j) E 8. The 

head of list L( i, a, j) contains a pointer to the element 
in list A’( i, a) which points to L( i, a, j). In a set K, 

we maintain pointers to those lists A’(i,u) of length 
> 2. The head of A’( i, a) contains a pointer to the ele- 
ment of K which points to A’( i, a). The data structure 
is illustrated by Fig. I. In addition to D’, we need two 
arrays r and r’ for the efficient computation of V’+i . 

(1) For all b E 2 \ {a}, we use A(q, 6) for find- 
ing the unique record which contains q with respect to 
the lists L(i, b, .), if it exists. Assume that L(i, 6, k) 

is the list containing this record. Then we delete this 
record from L( i, b, k), inserting it into L( t + 1, b, k). 

For the efficient determination of L( t + 1, b, k), we 
maintain an additional 1 Z/ x IQl-array r. The com- 

ponent r( b, k) contains a pointer to the last gener- 
ated list L( j, b, k). If j # t + 1, then we have to 
generate a new list. S(i, b, k) is decreased by 1, and 

S( t + 1, b, k) is increased by 1. If L( i, b, k) becomes 
empty, we delete the pointer to L( i, b, k) from A’( i, 6) 

and eventually, the pointer to A’(i, b) from K. In the 
case that L( t + 1, b, k) gets defined, we have to add 
toA’(t+l,b)apointertoL(t+l,b,k),andeven- 
tually, we have to add to K a pointer to A’( t + 1, b). 

r( b, k) is modified appropriately. 

It is easy to see that at the beginning, the data struc- 
ture 272 can be constructed in 0( kn) time. Given the 
structure D,, we will describe how to perform Step 2 
with respect to the construction of V’+t . 

(2) For all b E 2, for all p E A-’ (b, q), we use 

A(p, b) for finding the unique record which contains 
p with respect to the lists L( ., b, i), if it exists. As- 
sume that L( k, b, i) contains p. Then we delete p from 
this list, inserting it into .I,( k, b, I + 1) . Analogously 

to above, we maintain an additional IQ I x 1 Xl-array r’ 
such that Z,( k, b, t + 1) can be determined in constant 
time. S( k, b, i) is decreased by 1, and S( k, b, tf 1) is 
increased by I. If L( k, 6, i) becomes empty, we delete 
the pointer to L( k, b, i) from A’( k, b) and eventu- 
ally, the pointer to A’(k, b) from K. In the case that 
L(k, b, t + 1) gets defined, we have to add to A’( k, b) 

a pointer to L( k, b, t + 1) , and eventually, we have to 
add to K a pointer to A’( k, 6). r’( k, b) is modified 
appropriately. 

(i) Use the set K for obtaining a list A’( i, a) of By construction, it is easy to see that the structure 
length > 2 in constant time, and choose any two triples D,+i is correctly computed. Note that after the termi- 
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nation of the algorithm, the resulting 6’ is the transition 
function of the minimal finite automaton. It remains 

to check the time complexity. 
Step (i) needs only constant time. In Step (ii. 1) and 

Step (ii.Z), the total time for transferring one record 
from one list to another list is constant. Every time a 
record is moved in Step (ii. 1 ), a transition 6( q, a) = p 
of the transition function for which q has changed the 
name of its class is considered. Every time a record 
is moved in Step (ii.2), a transition S(p, a) = q of 
the transition function for which q has changed the 
name of its class, is considered. Hence, every time 
such a transition is considered, at least one of the two 
states in this transition has changed the name of its 
class. Hence, each transition in S is considered at most 
2 logn times. There are at most kn transitions in 8. 
Hence, the total time used for Step (ii) is bounded by 
0( kn log n) . Altogether we have obtained the follow- 
ing theorem. 

Theorem 1. The standard method for minimizing an 
n-statejnite automaton can be implemented such that 
the used time is 0( kn log n) . 
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